氢气价格达到多少钱可以和油价平衡吗_氢气价格多少钱一升
1.油价上涨对煤炭股有什么影响
2.油价上涨对MDI的主要原料苯胺的价格有多大影响?
3.新能源汽车有哪些优势?
4.急!关于燃料电池
5.新能源汽车与传统汽车比较有什么优缺点?
6.化学与能源的关系?
新能源汽车的优点有:
1、新能源汽车环保
新能源汽车采用的主要是非燃油动力装置,不需要燃烧汽油、柴油等,而是采用清洁能源,比如:电力、太阳能、氢气等。这样,就减少了二氧化碳等气体的排放,从而达到保护环境的目的。
2、新能源汽车不用限号出行
因为环境污染严重,为了减轻环境压力,很多城市都采用汽车限号的方式,限制私家车的出行。但是,新能源汽车几乎是零污染、零排放,所以也就不在限号范围内,更方便出行。
3、效率高。
一般新能源汽车采用新技术,新结构,使它的效率更高。
新能源汽车的缺点有:
1、充电难、充电慢
因为现在新能源汽车暂未普及,因此很多城市或地区都缺少供新能源汽车充电的充电桩,所以给汽车充电不太方便。除此之外,新能源汽车动力装置系统并不是很成熟,充电比较慢,一般需要数小时,这就不太方便。
2、续航里程较短。对于采用电力的新能源汽车来说,汽车电池的蓄电量有限,所以汽车持续行驶的里程也会受限,一般不能进行较长距离的行驶。
3、售后服务还不成熟
新能源汽车作为汽车行业的“新星”,各方面都还在摸索、改善中,对于新能源汽车的售后维修,尚没有很多熟练的维修人员,不能及时维修,这就给车主带来很大不便。
扩展资料
关于新能源汽车的优缺点
优点:技术相对简单成熟,只要有电力供应的地方都能够充电。
缺点:蓄电池单位重量储存的能量太少,还因电动车的电池较贵,又没形成经济规模,故购买价格较贵;至于使用成本,有些试用结果比汽车贵,有些结果仅为汽车的1/7~1/3,这主要取决于电池的寿命及当地的油、电价格。
参考资料:
油价上涨对煤炭股有什么影响
(1)①由图可知,0~1min内氢气的变化量为8mol-6mol=2mol;
B.1~3min内氢气的变化量为6mol-3mol=3mol,平均1min变化量为1.5mol; C.3~8min内氢气的变化量为3mol-2mol=1mol,平均1min变化量为0.2mol;D.8~11min达平衡状态,氢气的物质的量不再变化.
故1~3min速率增大,8~11min速率最小.
故答案为:D;
②对于可逆反应CO2(g)+3H2(g)?CH3OH(g)+H2O(g)△H=-49.0kJ?mol-1,正反应是体积减小的放热反应.
由图1可知,曲线Ⅰ最先到达平衡,平衡时氢气的物质的量增大,故改变条件应增大反应速率且平衡向逆反应移动,可以采取的措施为:升高温度.
曲线Ⅱ到达平衡的时间比原平衡短,平衡时氢气的物质的量减小,故改变条件应增大反应速率且平衡向正反应移动,可以采取的措施为:增大压强或者是增大CO2浓度,故答案为:升高温度;增大压强或者是增大CO2浓度;
③变化量为8mol-2mol=6mol,所以放出热量为
6 |
3 |
CO2(g)+3H2(g)?CH3OH(g)+H2O(g)
初起量(mol)? 6? 8 0? 0
变化量(mol)?2? 6 2? 2
平衡量(mol)?4? 2 2? 2
所以K=
| ||||
|
1 |
2 |
1 |
2 |
④通过改变条件使平衡正向移动
A 升高温度,平衡逆向移动,故错误;
B 充入He(g),使体系压强增大,平衡不移动,故错误;
C 将H2O(g)从体系中分离,平衡正向移动,故正确;
D 再充入1molCO2和3molH2,相当于增大压强,平衡正向移动,故正确;
故选:CD;
(2)通入甲醇的一极为原电池的负极,发生氧化反应,电极反应式为CH3OH-6e-+H2O=CO2+6H+,正极加入H2O2,发生还原反应,电极反应式为H2O2+2H++2e-=2H2O,
①燃料放电后生成氢离子,故答案为:燃料;CH3OH-6e-+H2O=CO2+6H+;
②由电极反应式可知:3H2O2~~CO2
3mol 22.4L
1.5mol 11.2L,故答案为:11.2L.
油价上涨对MDI的主要原料苯胺的价格有多大影响?
油价上涨会推高煤炭库存。随着油价上涨,使用汽油和柴油的成本将会增加。随着石油成本的上升,更多的人会选择使用煤炭,这样煤炭才会卖得好。煤炭的热销会促进煤炭股公司业绩的提升,业绩会通过股票体现出来,所以会带动煤炭股的上涨。 因为煤是石油产品的替代品。替代是指两种产品之间的竞争销售关系,即一种产品销量的增加会降低另一种产品的潜在销量,反之亦然。当油价上涨时,人们会使用廉价的煤炭来取暖、做饭和发电,因此这对煤炭行业有利。
煤是埋藏在地下的古老植物通过复杂的生化和物理化学变化形成的固体可燃矿物。 煤被称为黑金和工业食品。它是18世纪以来人类世界使用的主要能源之一。进入21世纪以来,虽然煤炭的价值比以前低了很多,但毕竟煤炭长期以来一直是我们生产生活不可或缺的能源之一,煤炭的供应也关系到我国工业乃至整个社会发展的稳定。煤炭供应安全也是我国能源安全中最重要的一环。 煤是地球上最丰富、分布最广的化石燃料。
一、煤有机质的主要元素是碳、氢、氧、氮和硫。此外,还有极少量的磷、氟、氯和砷。 碳、氢、氧是煤的主要有机质,占95%以上;煤化程度越深,碳含量越高,氢氧含量越低。碳和氢是煤燃烧时产生热量的元素,氧是助燃元素。在煤燃烧过程中,氮不产生热量,而是在高温下转化为氮氧化物和氨,以游离状态析出。
二、硫、磷、氟、氯、砷是煤中的有害成分,其中硫是最重要的。煤炭燃烧时,大部分硫被氧化成二氧化硫(SO2),随烟气排放,污染大气,危害动植物生长和人体健康,腐蚀金属设备;当含硫煤用于冶金炼焦时,也会影响焦炭和钢的质量。因此,硫含量是评价煤质的重要指标之一。 煤中有机物在一定温度和条件下热分解产生的可燃气体称为“挥发分”,是由各种碳氢化合物、氢气、一氧化碳等化合物组成的混合气体。
三、挥发分也是主要的煤质指标。对确定煤的加工利用方式和工艺条件具有重要的参考作用。煤化度低的煤挥发分多。如果燃烧条件不合适,挥发分含量高的煤容易产生未燃碳粒,俗称“黑烟”;并产生较多的一氧化碳、多环芳烃、醛类等污染物,降低了热效率。因此,应根据煤的挥发分选择合适的燃烧条件和设备。
新能源汽车有哪些优势?
近几年苯胺市场资源充裕,需求不旺,基本处于供大于求状态。1995年市场最高价曾达13000元/t,以后一路下滑,到1998年曾降至4900 ̄5300元/t(净水),是近年来少见的低价位,只相当于1990年初的价格水平。由于国家采取了扩大内需的方针和积极的财政政策,国内市场逐步好转,化工市场也有所回升。另外随着亚洲经济的复苏和全球经济的增长,我国进出口也大幅增加。因此从去年开始,化工市场有所好转,苯胺需求略有增加,价格回升。今年以来,苯胺销势尚好,价格也处于较高价位,目前市场价为7200 ̄7500元/t。预计下半年苯胺市场将以稳为主,不会出现供不应求的局面。价格相对稳定,波动幅度不会太大。主要原因是:(千金难买牛回头 我不需再犹豫)
一、我国苯胺产量逐年增加,可基本满足国内需要(剖析主流资金真实目的,发现最佳获利机会!)
现有生产厂家20多家,年生产能力20多万t。主要生产厂家有吉化公司染料厂,辽宁庆阳化工公司、苏州9395厂、南京化工厂、兰化公司、南化公司、重庆长风化工厂、青岛胶南化肥厂、河南开普化工有限公司。烟台合成革厂等。1999年产量14. 27万t,比1998年增加21.4%。预计今年产量在14万t左右,社会需求量约14万t ,产需基本平衡。
改革开放以后,我国经济持续高速增长,各相关行业对苯胺的需求不断增加,市场供不应求,经济效益较好,因此各地新增了一批苯胺生产装置,能力大幅增加。新建装置大多采用硝基苯加氢的生产方法,每生产1t苯胺要消耗氢气600多m3, 不少厂家因缺氢不能满负荷生产。另外部分装置陈旧老化,影响了生产能力的发挥。即便如此,近几年苯胺产量逐年增加,而且增长幅度较大。
由于苯胺销价上涨幅度较大,企业生产积极性提高,预计今年产量还会有一定的增加。今年1 ̄3月份已生产2.96万t,同比增加12%。 我国苯胺生产能力较大,若需求大量增加,可靠增产来解决。
二、下半年苯胺需求不会有大的增加
近年来,我国苯胺消费结构有了较大的变化,主要反映在染料工业上。多时消耗苯胺40%以上,少时则占20%以下,因此染料生产直接影响苯胺市场。苯胺消费构成情况大致是:染料、有机颜料约占苯胺总消费量的17% ̄40%,橡胶助剂、农药、医药、聚氨酯占50%~60%,其他占10% ̄20%。
染料工业是消费苯胺的大户,主要用于酸性染料、碱性染料、阳离子染料、直接染料、分散染料、活性染料、色酚AS等70多个品种。近几年染料市场一直供大于求,出口有限,还有不少进口。另外为保护环境,国家下令关闭了小染料厂,小印染厂等,染料产量没有大的增加。橡胶助剂也是苯胺另一大用户,主要用于促进剂队促进剂队防老剂甲,防老剂丁等10来个品种的生产。近年来轮胎、三带一管、胶鞋等橡胶制品销路不畅,经济效益下降,一些企业处于亏损状态,橡胶助剂销势平平,产量也没有多少增加。其他耗用苯胺的产品,如对苯二酚、二苯胺、环己胺、二甲基苯胺、1,3,5-吡唑酮、农药、有机颜料等也大多供大于求,由于上述情况,苯胺目前在染料方面销势不旺。
由于国家采取了扩大内需的方针和积极的财政政策,国内市场逐步好转。今年上半年工业生产增速加快,产销率进一步提高,经济效益增加,产品价格上涨。染料产量1 ̄5月份同比增加18.9%,橡胶助剂产量同比增加22.1%,也等于增加了苯胺的用量。另外苯胺是聚氨醋塑料的原料MDI、TDI的原料,近年来我国聚氨酯工业发展较快,应用范围日益扩大,但是MDI,TDI产不足需,要靠进口来解决。为满足国内需要,近期建成了一批MDI、TDI生产装置,将会增加苯胺的消费量,但是这些装置不少都配套有苯胺生产装置,苯胺产量也会增加。目前我国市场还没有根本好转,苯胺下游产品销势还不旺,下半年需求虽有增加,但估计数量不会太大。
三、国际市场原油价格变化将引起苯胺价格的波动
去年以来苯胺价格上涨,并不完全是需求大量增加所致,而与国际市场油价上涨有很大的关系。去年下半年,国际市场原油大幅涨价,苯胺的主要原料纯苯价格也随之上扬,带动苯胺价格攀升。今年上半年,国际市场油价起落变化频繁,频创新高,最高曾达39.5美元/桶。由于沙特又决定增产原油,近日油价又开始回落,但将会维持在25美元/桶以上的价位。我国原油价格已和国际市场基本接轨,将会随国际市场变化而变化。因此后期苯胺价格会相对稳定,波动的幅度不会太大。
四、苯胺进口减少,对国内市场影响的力度减弱
较长一段时间,我国苯胺产不足需,要靠进口来弥补,有的年份也有少量出口,总的来说是进口大于出口,近年来随着我国苯胺产量不断增加,进口量呈下降的趋势。近年苯胺进口量见表1。这期间也有部分出口,多时1000多t,少时几百吨,因此对国内市场已无大的影响,预计今年进口还会减少。
综上所述,下半年苯胺市场将以稳为主,价格也不会有大的波动。
表1 近年我国苯胺进口情况 万t
年份 进口量
1992年 2.35
1993年 1.32
1994年 1.19
1995年 1.16
1996年 0.65
1997年 0.55
1998年 0.48
1999年 0.65
急!关于燃料电池
首先,纯电驱动的车辆拥有较好的驾驶感受。在目前主流转速为12000转和6000转的基础上,在满足一定汽车行驶速度的要求下,电动车根本不需要多档,而这无疑会减少换挡所引起的顿挫感。
其次,新能源汽车的驱动效率要更高。传统的燃油车的发动机效率是在40%左右,在抛开一部分被当作是废气而排放掉的燃油能量以后,效率则会降到30%左右。同时,电机加电机控制器理论上的最大效率是可以达到95%的,而且在实际使用中的效率基本上也都超过了85%。换句话来说,在假设行驶路程相同的情况下,理论上电动汽车所需要的能量大约是汽油车的十分之一。
最后,使用新能源车的成本更低而且更环保。按照当前我国油价和电价进行对比,一般电动汽车的耗电为10至15度电每百公里,而家庭电价虽然各省价格不同,但是基本上是在0.5元左右,也就是说电动汽车的每百公里大约是5至7.5元,同时按传统汽车为1.5-1.6排量来计算,油耗大约为7升每百公里,根据当前92号油价6.1元每升来计算,则传统汽油车每百公里为42.7元。而且新能源车基本都可以做到较低或者零排放。
然而新能源汽车也存在一些劣势,比如说充电并不方便、在长途出行的续航里程方面较弱,而且电池的电量和充放电功率都会受到气温的影响。但是,这一些问题也是许多新能源汽车厂商和科研机构正在寻求解决的。
总的来说,新能源汽车还是属于新的行业,尽管这个行业依然存在不少的问题,但是这并不影响这个行业发展的潜力。也许在未来,我们能够看到新能源汽车完全取代传统燃油车的那一天。
新能源汽车与传统汽车比较有什么优缺点?
简单地说,燃料电池(Fuel Cell)是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。燃料电池的概念是1839年G.R.Grove提出的,至今已有大约160年的历史。
[编辑本段]燃料电池的特点
燃料电池十分复杂,涉及化学热力学、电化学、电催化、材料科学、电力系统及自动控制等学科的有关理论,具有发电效率高、环境污染少等优点。总的来说,燃料电池具有以下特点:
(1)能量转化效率高 他直接将燃料的化学能转化为电能,中间不经过燃烧过程,因而不受卡诺循环的限制。目前燃料电池系统的燃料—电能转换效率在45%~60%,而火力发电和核电的效率大约在30%~40%。
(2)有害气体SOx、NOx及噪音排放都很低 CO2排放因能量转换效率高而大幅度降低,无机械振动。
(3)燃料适用范围广
(4)积木化强 规模及安装地点灵活,燃料电池电站占地面积小,建设周期短,电站功率可根据需要由电池堆组装,十分方便。燃料电池无论作为集中电站还是分布式电,或是作为小区、工厂、大型建筑的独立电站都非常合适
(5)负荷响应快,运行质量高 燃料电池在数秒钟内就可以从最低功率变换到额定功率,而且电厂离负荷可以很近,从而改善了地区频燃料电池原理率偏移和电压波动,降低了现有变电设备和电流载波容量,减少了输变线路投资和线路损失。
[编辑本段]“燃料”和“电池”
为了了解它的价值,让我们分别研究一下“燃料”和“电池”这两个词。
为了利用煤或者石油这样的燃料来发电,必须先燃烧煤或者石油。它们燃烧时产生的能量可以对水加热而使之变成蒸汽,蒸汽则可以用来使涡轮发电机在磁场中旋转。这样就产生了电流。换句话说,我们是把燃料的化学能转变为热能,然后把热能转换为电能。在这种双转换的过程中,许多原来的化学能浪费掉了。然而,燃料非常便宜,虽有这种浪费,也不妨碍我们生产大量的电力,而无需昂贵的费用。还有可能把化学能直接转换为电能,而无需先转换为热能。为此,我们必须使用电池。这种电池由一种或多种化学溶液组成,其中插入两根称为电极的金属棒。每一电极上都进行特殊的化学反应,电子不是被释出就是被吸收。一个电极上的电势比另一个电极上的大,因此,如果这两个电极用一根导线连接起来,电子就会通过导线从一个电极流向另一个电极。这样的电子流就是电流,只要电池中进行化学反应,这种电流就会继续下去。手电筒的电池是这种电池的一个例子。在某些情况下,当一个电池用完了以后,人们迫使电流返回流入这个电池,电池内会反过来发生化学反应,因此,电池能够贮存化学能,并用于再次产生电流。汽车里的蓄电池就是这种可逆电池的一个例子。在一个电池里,浪费的化学能要少得多,因为其中只通过一个步骤就将化学能转变为电能。然而,电池中的化学物质都是非常昂贵的。锌用来制造手电筒的电池。如果你试图使用足够的锌或类似的金属来为整个城市准备电力,那么,一天就要花成本费数十亿美元。
燃料电池是一种把燃料和电池两种概念结合在一起的装置。它是一种电池,但不需用昂贵的金属而只用便宜的燃料来进行化学反应。这些燃料的化学能也通过一个步骤就变为电能,比通常通过两步方式的能量损失少得多。于是,可以为人类提供的电量就大大地增加了。
目前,燃料电池按电解质划分已有6个种类得到了发展,即碱性燃料电池(Alkaline Fuel Cell,AFC)、磷酸盐型燃料电池(Phosphoric Acid Fuel Cell,PAFC)、熔融碳酸盐型燃料电池(Molten Carbonate Fuel Cell,MCFC)、固体氧化物型燃料电池(Solid Oxide Fuel Cell,SOFC)、固体聚合物燃料电池(Solid Polymer Fuel Cell,SPFC,又称为质子交换膜燃料电池,Proton Exchange Membrane Fuel Cell,PEMFC)、及生物燃料电池(BEFC)。按工作温度它们又分为高、中、低温型燃料电池。工作温度从室温到373K(100℃)的为常温燃料电池,如SPFC;工作温度在373K(100℃)~573K(300℃)之间的为中温燃料电池,如PAFC;工作温度在873K(600℃)以上的为高温燃料电池,如MCFC和SOFC。
燃料电池实质上是以控制氢弹爆炸的观念设计,太空船上的燃料电池是用来聚集星际旅行之间的氢气所产生的能量之用。太空船的太阳能板所聚集的电磁和太阳能将会转换成电能,而电能会用来慢慢地将存放在燃料电池内的氢置换成燃料。燃料电池也内含了一小部份受控制量的可进行核分裂的物质,这些物质依序用来与氢核进行核反应。核反应在燃料电池内进行,在太空旅程中提供高能量并加速离子引擎来推进太空船。在最后的旅程阶段,燃料电池提供了燃料火箭动力所需的氢。这整个过程受控在强大的电磁下,它能提供能量并且避免过量的能量外泄导致反应炉核心融毁。核反应的一项副产物——热能,则被燃料电池的外壁吸收并转换成供给电脑、维生系统和其他必要功用的电能。
经过多年的探索,最有望用于汽车的是质子交换膜燃料电池。它的工作原理是:将氢气送到负极,经过催化剂(铂)的作用,氢原子中两个电子被分离出来,这两个电子在正极的吸引下,经外部电路产生电流,失去电子的氢离子(质子)可穿过质子交换膜(即固体电解质),在正极与氧原子和电子重新结合为水。由于氧可以从空气中获得,只要不断给负极供应氢,并及时把水(蒸汽)带走,燃料电池就可以不断地提供电能。
世界上最小的燃料电池——直径只有3毫米
美国科学家最近研制出世界上最小的燃料电池,这种电池的直径只有3毫米,可以产生0.7伏的电压并能持续供电30个小时,这种燃料电池可以在不消耗电的情况下发电,它由四个部分组成。上一层是储水池,下层是一个装有金属氢化物的燃料堂,中间以一层薄膜隔开,在金属氢化物的燃料堂下放,还有一组电极。薄膜上还有许多小孔,使得储水池中的水分子可以以水蒸气的形式进入燃料堂,水分子进入燃料堂后,与金属氢化物发生生化学反应幷产生氢气。氢气随之会充满整个燃料堂,幷向上冲击薄膜。阻止水流继续流入,然后氢气会在燃料堂下层的电极处发生化学反应,形成电流。
新电池体积非常的小,规模为 3x3x1毫米。而且没有重力。其表现张力可以控制水流,这意味着即使处于移动的旋转状态下,也能够很好的工作。因此它最适用于一些小电器。现在,这种电池可以产生0.7伏电压和一毫安电流,电燃料可以持续30小时左右。
[编辑本段]燃料电池的发明
虽然燃料电池这个名词出现在人们 眼前的时间并不长,但它的历史已经可以追溯到100多年前了。在1889年,Ludwig Mond和Charles Langer两位化学家想用空气和工业煤气制造一个实用的能提供电能的装置,“燃料电池”一词也就随着他们的发明而诞生了。现代燃料电池技术兴起于20世纪60年代,为了给航天飞机寻找高效能的电能装置, 美国宇航局跟GE公司合作开发了第一个现代意义上的燃料电池—质子交换膜燃料电池,这也是燃料电池商用化的开始。此后,历经40多年的发展,燃料电池的家族越发的人丁兴旺,而应用领域也遍及各处。
[编辑本段]中国燃料电池技术的发展现状
中国早在20世纪50年代就开展燃料电池方面的研究。中国在燃料电池关键材料、关键技术的创新方面取得了许多突破。中国政府十分注重燃料电池的研究开发,陆续开发出百瓦级-30kW级氢氧燃料电极、燃料电池电动汽车等。燃料电池技术特别是质子交换膜燃料电池技术也得到了迅速发展,开发出60kW、75kW等多种规格的质子交换膜燃料电池组,开发出电动轿车用净输出40kW、城市客车用净输出100kW燃料电池发动机,使中国的燃料电池技术跨入世界先进国家行列。
在当今全球能源紧张、油价高涨的时代,寻找新能源作为化石燃料的替代品是当务之急。因为氢能的优势明显,清洁、高效,因此得到各国政府的大力支持,加上各种能源动力企业对燃料电池的发展信心十足,所以燃料电池未来市场将有巨大的上升空间。
尽管现在燃料电池的市场需求相当小,预计在随后的十年间,随着技术进步与规模经济效益,燃料电池的生产成本与使用成本将下降,竞争力提高,燃料电池潜在的市场将会逐步发展起来。现在对于便携式燃料电池的需求相当少,但便携式燃料电池市场将是从现在到2011年甚至更长时间增长最快的市场。应用于消费电子产品的燃料电池系统在最近几年中就会商业化。
[编辑本段]燃料电池技术分类
燃料电池的种类按不同的方法可大致分类如下:
1. 按燃料电池的运行机理分。
分为酸性燃料电池和碱性燃料电池。
2. 按电解质的种类不同,有酸性、碱性、熔融盐类或固体电解质。
因此,燃料电池可分为碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)、质子交换膜燃料电池(PEMFC)等。在燃料电池中,磷酸燃料电池(PAFC)、质子交换膜燃料电池(PEMFC)可以冷起动和快起动,可以用作为移动电源,适应FCEV使用的要求,更加具有竞争力。
3. 按燃料类型分。
有氢气、甲醇、甲烷、乙烷、甲苯、丁烯、丁烷等有机燃料,汽油、柴油和天然气等气体燃料,有机燃料和气体燃料必须经过重整器"重整"为氢气后,才能成为燃料电池的燃料。
4. 按燃料电池工作温度分。
有低温型,温度低于200℃;中温型,温度为200~750℃;高温型,温度高于750℃。
在常温下工作的燃料电池,例如质子交换膜燃料电池(PEMFC),这类燃料电池需要采用贵金属作为催化剂。燃料的化学能绝大部分都能转化为电能,只产生少量的废热和水,不产生污染大气环境的氮氧化物。不需要废热能量回收装置,体积较小,质量较轻。但催化剂铂(Pt)会与工作介质中的一氧化碳(CO)发生作用后产生"中毒"现象而失效,使燃料电池效率降低或完全损坏。而且铂(Pt)的价格很高,增加了燃料电池的成本。
另一类是在高温(600~1000℃)下工作的燃料电池,例如熔融碳酸盐燃料电池(MCFC)和固体氧化物燃料电池(SOFC),这类的燃料电池不需要采用贵金属作为催化剂。但由于工作温度高,需要采用复合废热回收装置来利用废热,体积大,质量重,只适合用于大功率的发电厂中。
最实用的燃料电池是以氢或含富氢的气体燃料,但是在自然界是不能直接获得氢的,燃料电池氢的;来源通常是以石油燃料、甲醇、乙醇、沼气、天然气、石脑油和煤气中,经过重整、裂解等化学处理后来制取含富氢的气体燃料。氧化剂则采用氧气或空气,最常见的是用空气作为氧化剂。
化学与能源的关系?
新能源汽车目前与传统汽车相比各有优劣,下面为你详细列举。
1、新能源车动力比传统汽车强,这个看似有争议,但其实就是这样的,想想现在的大型机械,固定式的机械基本上都是用电,只有移动式的才用燃料,就是因为电能的性能更强,而燃油的能量密度更高,目前新能源车性能普遍不高大多数是为了节省续航,但是从特斯拉就能看出,只要技术能够达到,还是电动车性能强。
2、传统汽车续航更长,可能有人觉得现在也有很多电动车续航里程达到400、500公里的,与传统汽车一箱油的续航差不多,然而这只是狭义上的续航里程,广义上看,传统汽车没油了,随便找个加油站,2分钟加满油就又可以满续航上路,而新能源车无论是找为数不多的充电站还是某些品牌直接呼叫换电池服务,花的时间都远不止传统汽车加油花的那点时间。
3、新能源车更舒适,这个基本上是达成了共识的,新能源车得益于电机的工作特性,使得新能源车的行驶更加平顺,而不像传统汽车需要传输爬升和换挡等动力衔接过程,而且电机的运转噪音也小得多,很多电动车的主要噪音都来自于胎噪和风噪,总的噪音还是比传统汽车小很多。
4、新能源车更实用,同样得益于新能源车的结构特殊性,新能源车的动力系统占用的车身空间更小,使得新能源车没有了传统意义上的引擎舱、传动轴等概念,一切的多余空间都可以让给车内或储物空间,如此一来,新能源车的装载能力大大加强,车内空间也大大增加,载人拉货都不在话下。
5、新能源车更环保,这个特性在个人方面可能更多地体现在充电成本上,无论是家用和商用电都肯定比油价低,而在广义上虽然还有争议,有的人认为更多地发电产生的污染同样不低,但是目前全世界所有国家的趋势都是用新能源淘汰传统车,而且速度极快,侧面证明了新能源车一定是更加环保的。
化学与能源主要是两个方面的关系,一是解决旧能源带来的污染,二是发掘新能源以解决能源危机。
新能源又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。能源世界有最全面的资料免费下载
参考资料编辑本段]分类
新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生的热能。包括了太阳能、风能、生物质能、地热能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。也可以说,新能源包括各种可再生能源和核能。相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源(特别是化石能源)枯竭问题具有重要意义。同时,由于很多新能源分布均匀,对于解决由能源引发的战争也有着重要意义。
据世界断言,石油,煤矿等资源将加速减少。核能、太阳能即将成为主要能源。
联合国开发计划署(UNDP)把新能源分为以下三大类:大中型水电;新可再生能源,包括小水电、太阳能、风能、现代生物质能、地热能、海洋能(潮汐能);穿透生物质能。
一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被是做垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。
新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。
按类别可分为:太阳能 风力发电 生物质能 生物柴油 燃料乙醇 新能源汽车 燃料电池 氢能 垃圾发电 建筑节能 地热能 二甲醚 可燃冰等
[编辑本段]新能源概况
据估算,每年辐射到地球上的太阳能为17.8亿千瓦,其中可开发利用500~1000亿度。但因其分布很分散,目前能利用的甚微。地热能资源指陆地下5000米深度内的岩石和水体的总含热量。其中全球陆地部分3公里深度内、150℃以上的高温地热能资源为140万吨标准煤,目前一些国家已着手商业开发利用。世界风能的潜力约3500亿千瓦,因风力断续分散,难以经济地利用,今后输能储能技术如有重大改进,风力利用将会增加。海洋能包括潮汐能、波浪能、海水温差能等,理论储量十分可观。限于技术水平,现尚处于小规模研究阶段。当前由于新能源的利用技术尚不成熟,故只占世界所需总能量的很小部分,今后有很大发展前途。
[编辑本段]常见新能源形式概述
(具体内容详见各能源形式所对应的词条)
太阳能
太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式
广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。
利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。
太阳能可分为2种:
1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。
2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。
核能
核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2;,其中E=能量,m=质量,c=光速常量。核能的释放主要有三种形式:
A.核裂变能
所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量
B.核聚变能
由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。
C.核衰变
核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用
核能的利用存在的主要问题:
(1)资源利用率低
(2)反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决
(3)反应堆的安全问题尚需不断监控及改进
(4)核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制
(5)核电建设投资费用仍然比常规能源发电高,投资风险较大
海洋能
海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。
波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明。大型波浪发电机组也已问世。我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置。
潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦。世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年。我国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦。
风能
风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。
风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展,利用风来做其它的事情。
1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车。该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成。到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时。
生物质能
生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。
地热能
地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦。
氢能
在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪的理想能源。氢能可以作飞机、汽车的燃料,可以用作推动火箭动力。
海洋渗透能
能源世界有最全面的资料免费下载
参考资料 如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液。江河里流动的是淡水,而海洋中存在的是咸水,两者也存在一定的浓度差。在江河的入海口,淡水的水压比海水的水压高,如果在入海口放置一个涡轮发电机,淡水和海水之间的渗透压就可以推动涡轮机来发电。
海洋渗透能是一种十分环保的绿色能源,它既不产生垃圾,也没有二氧化碳的排放,更不依赖天气的状况,可以说是取之不尽,用之不竭。而在盐分浓度更大的水域里,渗透发电厂的发电效能会更好,比如地中海、死海、我国盐城市的大盐湖、美国的大盐湖。当然发电厂附近必须有淡水的供给。据挪威能源集团的负责人巴德·米克尔森估计,利用海洋渗透能发电,全球范围内年度发电量可以达到16000亿度。
水能
水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。是常规能源,一次能源。水不仅可以直接被人类利用,它还是能量的载体。太阳能驱动地球上水循环,使之持续进行。地表水的流动是重要的一环,在落差大、流量大的地区,水能资源丰富。随着矿物燃料的日渐减少,水能是非常重要且前景广阔的替代资源。目前世界上水力发电还处于起步阶段。河流、潮汐、波浪以及涌浪等水运动均可以用来发电。
[编辑本段]新能源的发展现状和趋势
部分可再生能源利用技术已经取得了长足的发展,并在世界各地形成了一定的规模。目前,生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。
国际能源署(IEA)对2000~2030年国际电力的需求进行了研究,研究表明,来自可再生能源的发电总量年平均增长速度将最快。IEA的研究认为,在未来30年内非水利的可再生能源发电将比其他任何燃料的发电都要增长得快,年增长速度近6%在2000~2030年间其总发电量将增加5倍,到2030年,它将提供世界总电力的4.4%,其中生物质能将占其中的80%。
目前可再生能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与可再生能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等据IEA的预测研究,在未来30年可再生能源发电的成本将大幅度下降,从而增加它的竞争力。可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。
我国政府高度重视可再生能源的研究与开发。国家经贸委制定了新能源和可再生能源产业发展的“十五”规划,并制定颁布了《中华人民共和国可再生能源法》,重点发展太阳能光热利用、风力发电、生物质能高效利用和地热能的利用。近年来在国家的大力扶持下,我国在风力发电、海洋能潮汐发电以及太阳能利用等领域已经取得了很大的进展。
新能源(或称可再生能源更贴切)主要有:太阳能、风能、地热能、生物质能等。生物质能在经过了几十年的探索后,国内外许多专家都表示这种能源方式不能大力发展,它不但会抢夺人类赖以生存的土地资源,更将会导致社会不健康发展;地热能的开发和空调的使用具有同样特性,如大规模开发必将导致区域地面表层土壤环境遭到破坏,必将引起再一次生态环境变化;而风能和太阳能对于地球来讲是取之不尽、用之不竭的健康能源,他们必将成为今后替代能源主流。
太阳能发电具有布置简便以及维护方便等特点,应用面较广,现在全球装机总容量已经开始追赶传统风力发电,在德国甚至接近全国发电总量的5%-8%,随之而来的问题令我们意想不到,太阳能发电的时间局限性导致了对电网的冲击,如何解决这一问题成为能源界的一大困惑。
风力发电在19世纪末就开始登上历史的舞台,在一百多年的发展中,一直是新能源领域的独孤求败,由于它造价相对低廉,成了各个国家争相发展的新能源首选,然而,随着大型风电场的不断增多,占用的土地也日益扩大,产生的社会矛盾日益突出,如何解决这一难题,成了我们又一困惑。
早在2001年,MUCE就为了开拓稳定的海岛通信电源而开展一项研究,经过六年多研究和实践,终于将一种成熟的新型应用方式MUCE风光互补系统向社会推广,这种系统采用了我国自主研制的新型垂直轴风力发电机(H型)和太阳能发电进行10:3地结合,形成了相对稳定的电力输出。在建筑上、野外、通信基站、路灯、海岛均进行了实际应用,获得了大量可靠的使用数据。这一系统的研究成果将为我国乃至世界的新能源发展带来了新的动力。
新型垂直轴风力发电机(H型)突破了传统的水平轴风力发电机启动风速高、噪音大、抗风能力差、受风向影响等缺点,采取了完全不同的设计理论,采用了新型结构和材料,达到微风启动、无噪音、抗12级以上台风、不受风向影响等性能,可大量用于别墅、多层及高层建筑、路灯等中小型应用场合。以它为主建立的风光互补发电系统,具有电力输出稳定、经济性高、对环境影响小等优点,也解决了太阳能发展中对电网冲击等影响。
随着能源危机日益临近,新能源已经成为今后世界上的主要能源之一。其中太阳能已经逐渐走入我们寻常的生活,风力发电偶尔可以看到或听到,可是它们作为新能源如何在实际中去应用?新能源的发展究竟会是怎样的格局?这些问题将是我们在今后很长时间里需要探索的。
[编辑本段]新能源的环境意义和能源安全战略意义
我国能源需求的急剧增长打破了我国长期以来自给自足的能源供应格局,自1993年起我国成为石油净进口国,且石油进口量逐年增加,使得我国接入世界能源市场的竞争。由于我国化石能源尤其是石油和天然气生产量的相对不足,未来我国能源供给对国际市场的依赖程度将越来越高。
国际贸易存在着很多的不确定因素,国际能源价格有可能随着国际和平环境的改善而趋于稳定,但也有可能随着国际局势的动荡而波动。今后国际石油市场的不稳定以及油价波动都将严重影响我国的石油供给,对经济社会造成很大的冲击。大力发展可再生能源可相对减少我国能源需求中化石能源的比例和对进口能源的以来程度,提高我国能源、经济安全。
此外,可再生能源与化石能源相比最直接的好处就是其环境污染少。
新的能源是什么
1
新能源,包括太阳能、风能、地热能、海洋能、生物质能和其他可再生能源。合理的开发利用新能源,可以改善和优化能源结构,保护环境,提高人民生活质量,促进国民经济和社会可持续发展。
新能源开发利用主要包括新能源技术和产品的科研、实验、推广、应用及其生产、经营活动。新能源的开发利用,应当与经济发展相结合,遵循因地制宜、多能互补、综合利用、讲求效益和开发与节约并举的原则,宣传群众,典型示范,效益引导,实现能源效益、环境效益、经济效益和社会效益的统一。
2
随着科学技术和社会生产力的不断发展,能源的问题显得越来越重要。目前,全世界的能源仍以煤、石油和天然气等化石燃料为主。这些化石燃料储量有限,同时它们又是极其宝贵的化工原料,可以从中提炼和加工出各种化学纤维、塑料、橡胶和化肥等化工产品。将这样重要的化工原料作为能源来使用实在可惜。随着社会生产力的发展和人类生活水平的提高,世界能源的消耗量愈来愈大。据估计,全世界石油、天然气和煤的储量最多只能供给人类使用一、二百年。因此,摆在人类面前的一项紧迫的战略任务就是探索新能源。目前研究开发的新能源主要有以下几种:
1.地热能与潮汐能
可利用的地热资源是地下热水、地热蒸气和热岩层。地下热水层一般在地下两千多米深处,温度80℃左右。将地下热水降低压力使之变成蒸气(在47.34 kPa时水80℃沸腾),可推动汽轮发电机发电。
潮汐能利用的是海水涨落造成的水位差。此种能量可以作为动力来推动水轮机发电。地球上潮汐涨落中蕴藏的能量是巨大的,但建造大规模的潮汐电站技术上有很多困难,成本也较高。
2.太阳能
太阳每年辐射到地球表面的能量约为5×10^22J,相当于目前世界能量消耗的1.3万倍,可以说太阳能是取之不尽用之不竭的无污染的理想能源。因此,太阳能的收集利用是当代科学家十分感兴趣的问题。
目前太阳能利用主要有三种形式。一种是直接利用太阳辐射热,建成太阳灶、太阳能热水器,太阳房(用于采暖)和塑料大棚等,或利用太阳能来发电。太阳能电站是利用集热器吸收太阳辐射的热量,其蓄热材料(液态金属)温度可高达1000℃左右。所吸收的热量通过热交换器将水变成水蒸气推动汽轮机发电。这种转换方式称之为光-热转换。第二种是光-电转换,即利用太阳能电池将太阳能直接转换成电能。太阳能电池种类较多,主要有单晶硅电池、砷化镓电池、磷化铟电池和多晶硅电池等。目前太阳能电池效率还比较低,成本也比较高。它主要用于人造卫星等宇宙飞行器作为各种仪器设备的动力。第三种是光-化学转换,即将太阳辐射直接转换成化学能。绿色植物的光合作用就是光-化学转换,但它还不能完全受人控制。因此,研究各种完全可控的光-化学转换方法也是当今世界重大的研究课题之一。近年来发现,太阳能辐射到某一光化学反应体系后,能形成动力学上稳定的光产物,使光能转化为化学能而储存起来。另外,在催化剂存在时,由太阳光直接分解水而制得氢和氧的方法也是太阳能利用较有发展前途的一条途径。发展氢能具有独特的优越性。首先,氢的原料是水,资源丰富。另外氢燃烧后的热值较高,1g 氢燃烧后可放出143 kJ的热量,而1g煤燃烧只有31~32kJ,1g汽油燃烧也只有48kJ。还有氢燃烧生成水,它来源于水又还原于水,是顺应自然的一种循环,不会打乱自然界的平衡。又因燃烧产物无烟尘以及其它污染物,所以氢能又是无污染的清洁能源。
虽然,地球接受太阳的总能量很大,但是由于其能量密度很低,取得单位能量的一次投资大,能量转换效率有待提高。
3.核能
原子核裂变和聚变时都放出巨大的能量。原子核能是一种比较理想的能源。
(1)核裂变能
裂变是较重的原子核在足够能量的中子轰击下分裂成较轻原子核的过程。当235U原子核发生裂变时,分裂成两个不相等的碎片和若干个中子。裂变过程相当复杂,已经发现裂变产物有35种元素,放射性核素有200种以上。下面是235U裂变中的一种方式:
[编辑本段]未来的几种新能源
波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源。据推测,地球上海洋波浪蕴藏的电能高达9×104TW。近年来,在各国的新能源开发计划中,波能的利用已占有一席之地。尽管波能发电成本较高,需要进一步完善,但目前的进展已表明了这种新能源潜在的商业价值。日本的一座海洋波能发电厂已运行8年,电厂的发电成本虽高于其它发电方式,但对于边远岛屿来说,可节省电力传输等投资费用。目前,美、英、印度等国家已建成几十座波能发电站,且均运行良好。
可燃冰:这是一种与水结合在一起的固体化合物,它的外型与冰相似,故称“可燃冰”。可燃冰在低温高压下呈稳定状态,冰融化所释放的可燃气体相当于原来固体化合物体积的100倍。据测算,可燃冰的蕴藏量比地球上的煤、石油和天然气的总和还多。
煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体。从泥炭到褐煤,每吨煤产生68m3气;从泥炭到肥煤,每吨煤产生130m3气;从泥炭到无烟煤每吨煤产生400m3气。科学家估计,地球上煤层气可达2000Tm3。
微生物:世界上有不少国家盛产甘蔗、甜菜、木薯等,利用微生物发酵,可制成酒精,酒精具有燃烧完全、效率高、无污染等特点,用其稀释汽油可得到“乙醇汽油”,而且制作酒精的原料丰富,成本低廉。据报道,巴西已改装“乙醇汽油”或酒精为燃料的汽车达几十万辆,减轻了大气污染。此外,利用微生物可制取氢气,以开辟能源的新途径。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。